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Universiteit Utrecht heeft uitgerekend dat de onbalans in het 
Utrechtse net verdwijnt als er 10.000 Utrechtse auto’s dagelijks
stroom gaan laden en lossen.
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Geschiedenis Elektriciteit in Nederland
• 1886: eerste elektriciteitscentrale, Kinderdijk
• 1886-1895: Nijmegen, Den Haag, Amsterdam, Rotterdam
• 1905: Utrecht
• 1920:  550 elektriciteitsbedrijven, waarvan 480 uitsluitend

distributiebedrijven
• Na 1945

• 10 provinciale en 69 gemeentelijke en andere distributiebedrijven.
• Distributienet bestond uit een grote diversiteit aan boven- en ondergrondse

verbindingen.
• Transformatoren waren in alle soorten en maten aanwezig.
• Aanzet tot de normalisatie in het elektriciteitsvoorzieningsysteem

• 1949: oprichting van de N.V. Samenwerkende Electriciteits-
Productiebedrijven (SEP)
• 1953: alle centrales verbonden

4https://phasetophase.nl/boek/boek_1_1.html

https://phasetophase.nl/boek/boek_1_1.html


Geschiedenis Elektriciteit in Nederland

• 1970: start landelijk 380 kV koppelnet
• 1991: sluiten van ring
• Fusies bedrijven (productie/distributie)
• 1998: derde Elektriciteitswet

• Liberalisering markt

• 2006-2011
• Tennet: HV netwerk beheerder 
• Stedin/Alliander/Enexis: distributienet beheerders
• Productiebedrijven (Eneco, Essent, etc.)
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Geschiedenis Utrecht/Houten
UTRECHT
• 1905: Gemeentelijk Energie Bedrijf Utrecht (GEB)
• 1916: Provinciale Utrechtse Elektriciteits Maatschappij (PUEM)
• 1922: Provinciaal en Gemeentelijk Utrechts Stroomleveringsbedrijf (PEGUS) 
• 1992: Regionale Energie Maatschappy Utrecht (REMU)
• 2003: Eneco/Stedin

HOUTEN/SCHALKWIJK
• 1921 Gemeentelijk Energie Bedrijf

GEB Houten verkocht aan PUEM op 1 jan 2024, 
Schalkwijk (1923)
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Local4local
• 100 jaar terug in de tijd? 
• Een netwerk bestaande uit vele (mini-)netwerken, met decentrale

opwek/verbruik

• Holon: een energiegemeenschap die bereid is rekening te houden
met het grotere energiesysteem. De term holon benadrukt dat het 
energiesysteem een complex systeem is met onderlinge
afhankelijkheden waarin partijen slim met elkaar moeten
samenwerken. Iedere holon (in de context van een energiesysteem) is 
automatisch ook een energy hub, zie: https://holontool.nl
• NIET: één van de drie quasideeltjes waaruit een electron is 

opgebouwd, holon draagt de lading van een electron
7

Voordelen lokaal energiesysteem
onder lokaal eigenaarschap

• Versterkt sociale samenhang
• Opbrengst blijft in de gemeenschap
• Dƌaagƚ biũ aaŶ ͚haaůbaaƌ eŶ beƚaaůbaaƌ͛
• Minder afhankelijk van de markt
• Minder infrastructuur
• Meer mogelijkheden voor opslag
• Versnelling energietransitie, minder CO2 

uitstoot
• Handelingsperspectief voor bedrijven die 

wachten op aansluiting
• Lokaal energie delen gaat wettelijk 

mogelijk worden ( EU  en Nationaal)

https://holontool.nl/


En waar zijn de elektrische auto’s? 
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Van idee naar simulaties en publicaties

Smart charging of electric vehicles with photovoltaic power and
vehicle-to-grid technology in a microgrid; a case study
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! Simulation of microgrid including solar panels, electric vehicles and load demand.
! Comparison of smart EV charging control algorithms.
! Analysis of impact smart charging and V2G on PV self-consumption and peak reduction.
! Analysis of impact control algorithms on EV battery lifetime.
! Analysis of impact different microgrid configurations.
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a b s t r a c t

We present a model developed to study the increase of self-consumption of photovoltaic (PV) power by
smart charging of electric vehicles (EVs) and vehicle-to-grid (V2G) technology. Whereas previous studies
mostly use large EV fleets in their models, our focus is on a smaller scale. We apply the model to a micro-
grid in Lombok, a residential neighbourhood in the city of Utrecht, the Netherlands. The microgrid con-
sists of a 31 kWp PV installation, an office, internet servers, three households, and two EVs. Three control
algorithms are presented which manage the charging profile of multiple EVs either in real-time or using
linear optimisation with predictions for PV power and electricity demand. We perform one-year simula-
tions using data for PV power, EV use, and electricity demand. Simulations results are evaluated on PV
self-consumption and peak demand reduction. In addition, we make qualitative statements on battery
degradation resulting from the charging strategies based on several indicators. We also simulate changes
in microgrid composition, for example by including more EVs. In the simulations, self-consumption
increases from 49% to 62–87% and demand peaks decrease by 27–67%. These results clearly demonstrate
the benefits of smart charging EVs with PV power. Furthermore, our results give insight into the effect of
different charging strategies and microgrid compositions.

! 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The transition to low carbon energy and transport systems
requires not only the large-scale adoption of clean technologies
and efficiency measures, but also new energy management strate-
gies to efficiently incorporate these innovations in the existing
infrastructure. Issues related to the grid integration of clean tech-
nologies can occur both at the energy supply side, with technolo-
gies such as photovoltaics (PV), and on the demand side, with
technologies such as electric vehicles (EV). Sophisticated energy
management can help solving these issues and optimise allocation

of resources, for instance by charging EVs with PV power instead of
electricity from coal or gas-fired power plants.

In the residential sector, there is an imbalance between PV
power supply and electricity demand. PV installations produce
most electricity during the day [1,2], while electricity demand of
households peaks in the morning and evening. Furthermore, typi-
cal EV charging patterns contribute to existing peaks in household
electricity demand1. A higher penetration level of PV and EVs will
increase power transport over the electricity grid, requiring grid
investments to prevent overloads [3,4]. Several countries in
Europe have started implementing policies to stimulate the

http://dx.doi.org/10.1016/j.apenergy.2015.04.092
0306-2619/! 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +31 302537534.
E-mail address: M.J.vanderKam@uu.nl (M. van der Kam).

1 E-laad [Internet]. Opladen elektrische auto’s zorgt voor piekbelastingen [update
2013 May 6th; cited 2014 May 14th] Available from: <http://www.e-laad.nl/nieuws/
opladen-elektrische-autos-zorgt-voor-piekbelastingen-2/>. In Dutch.
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Increasing Self-consumption of Photovoltaic Electricity by Storing 
Energy in Electric Vehicle using Smart Grid Technology in the 

Residential Sector 
A Model for Simulating Different Smart Grid Programs 

M. J. van der Kam and W. G. J. H. M. van Sark  
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands 

{m.j.vanderkam@students., w.g.j.h.m.vansark@}uu.nl 

Keywords: Smart Grid, Photovoltaic Electricity, Self-consumption, Electric Vehicle, Energy Storage. 

Abstract: In this paper a model has been developed which intends to simulate the increase of self-consumption of 
photovoltaic (PV)-power by storing energy in electric vehicle (EV) using smart grid technology in the 
residential sector. Three different possible smart grid control algorithms for a micro-grid consisting of solar 
panels, a household and an EV are presented that manage the (dis-)charging profile of an EV, either in real-
time or using linear optimization using predictions for PV-power and electricity demand. The different 
control algorithms are simulated for a year using data for PV-power and electricity demand from the 
Netherlands and one specific EV. Preliminary results of the model are presented, showing that all control 
algorithms could significantly increase self-consumption and reduce peaks in electricity demand from the 
main grid. Although the difference in performance of the control algorithms for self-consumption is 
marginal, we find that linear optimization works better than the real-time algorithms for peak reduction.  

1 INTRODUCTION 

The worldwide increase of electricity demand poses 
major challenges in the energy sector. Since 1971, 
the final consumption of electricity has increased 
four-fold to 60 PJ in 2010 (IEA, 2012) and is 
expected to further increase due to growing global 
population and welfare. Issues related to this 
development include availability, cost and 
environmental issues such as global warming and 
depletion of resources. While the industrial sector 
has the highest demand for electricity, demand in the 
residential sector shows the highest increase in 
Europe (Bertoldi and Atanusiu, 2008) and is 
therefore an important sector for changes in 
electricity provision and distribution.  

Another important sector contributing to global 
warming is the transport sector. Globally the 
contributions of the transport sector to greenhouse 
gas (GHG)-emissions amounted to nearly 20% in 
2009 (Hoen et al., 2009). According to the European 
Federation for Transport and Environment (2011) 
CO2 emissions from the European transport sector 
have increased by 29% since 1990. 

Electric vehicles (EVs) are a promising 
technology for reducing the environmental burden of 

road transport (Essen, et al. 2011). If EV sales 
increase it can be beneficial for reducing GHG-
emissions, but it also creates another issue; 
electricity demand will increase even further. Also, 
the typical charging pattern of EVs without a control 
system coincides roughly with that of households 
(E-laad, 2012), which is high in the morning and the 
evening and low in the afternoon; it thus contributes 
to existing peaks in electricity demand in the 
residential sector. 

PV technology can be part of the solution to 
problems relating with electricity and transport, 
since there are no emissions of greenhouse gasses 
during electricity production. If PV electricity is 
used to power EV’s, transport with EV will cause 
even less or zero GHG emissions. An important 
advantage of PV for the residential sector is its 
scalability; even single households can use this 
technology. 

However, the mismatched production and load 
curve for PV for domestic use poses a challenge. PV 
installations produce most electricity around noon, 
when solar insulation is high, while electricity 
demand is usually low then. In addition, solar power 
supply may be variable due to variations in cloud 
coverage.  

��

Proceedings of 3rd International Conference on Smart Grids and Green IT Systems 
(SMARTGREENS) (Eds. M. Helfert, K.H. Krempels, B. Donnellan), SciTePress, 2014, 
pp. 14-20.

Mart van der Kam

Parkhuis Lombok
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self-consumption of locally generated energy [5]. Self-consumption
of PV power should increase to ensure grid stability and functioning.

In a smart grid the traditional electricity grid or microgrid (i.e. a
local, low-voltage distribution system) is combined with informa-
tion and communication technologies [6]. Load shifting is an
essential aspect of smart grids and can be used to increase
self-consumption of PV power [7] and off-peak charging of EVs
[8]. An important advantage of EVs in smart grids is that they
can be used both as a flexible demand source and as a storage
option, using vehicle-to-grid (V2G) technology [9–13].

In this paper we use a case study to model and simulate the
application of smart charging algorithms for EVs. Simulation stud-
ies on using EVs for integration of PV in the grid mostly use a high
level of aggregation of EVs in their models. For example, two stud-
ies have been found that consider the case of using parking lots to
integrate EV and PV. Tulpule et al. [14] have performed a study for
a parking lot at a workplace in Columbus, OH, USA and Los Angeles,
CA, USA and show the feasibility of such a system as compared to
home charging both in terms of costs and CO2 emissions. Birnie
[15] considered a parking lot in New Jersey, NJ, USA and used a
simple approach to determine that most driving needs could be
met by solar power in the summer, but not in the winter. Other
studies consider EV fleets at a city or region level. For instance,
Zhang et al. [16] show that by using smart charging one million
EVs combined with one million heat pumps can reduce excess
PV power by 3 TW h for the Kansai Area, Japan. Drude et al. [17]
study PV and V2G strategies in urban regions in Brazil. They con-
clude the EVs can be used for grid-stabilisation, but that adequate
energy policies are needed to avoid destabilisation due to too many
cars offering storage for V2G. Tuffner et al. [18] simulated a distri-
bution system (IEEE 123-node) for Phoenix, AZ, USA weather con-
ditions. They conclude that penetration rates of EV and PV have to
be high (>50%) to have a significant impact on the network but that
the synergy of these technologies has significant benefits for these
high penetration rates.

According to Guille and Gross [19], EV batteries are too small to
make a significant impact on the grid by themselves. However,
large-scale deployment of V2G faces many socio-technical barriers
[20]. Our study aims to show the benefits of using EVs and smart
grid technology in a microgrid, since such a small-scale project
can be realised in the near future. These innovative pilot projects
are pivotal in realising the transformation of socio-technical sys-
tems such as the energy system as they allow the small-scale
experimentation with alternatives to the current system [21–23].
Furthermore, studying this project allows us to combine specific
real-world empirical data on PV power supply, load demand and
EV use. This paper thus contributes to the existing literature by
exploring alternatives to large-scale deployment of using EVs for
integration of PV in the electricity grid.

Our case study is LomboXnet2, a company providing internet
connection to about 2500 people in Lombok, a neighbourhood in
Utrecht, the Netherlands. LomboXnet has the ambition to run its
activities on locally produced solar power and provides PV power
to three houses in the neighbourhood. The company has two battery
EVs, which are used for car sharing. Car sharing is becoming increas-
ingly popular worldwide [24] and also in the Netherlands3 and it has
a great potential to reduce the environmental impact of personal
transportation [25–27]. When used for car sharing, the EVs are reg-
ularly stationed at the charging station, making them suitable for
grid balancing. This in contrast to other types of EV use such as com-
muting. The combination of PV, EV, smart grid and car sharing makes

LomboXnet an excellent case for studying the integration of clean
technologies.

Our research objective is to determine the potential for increas-
ing the self-consumption of PV power with smart charging of EVs
for LomboXnet. We simulate three different charging algorithms.
The first algorithm uses real-time information, the second uses
real-time information and V2G, and the third is an optimisation
algorithm using predictions for PV power supply and load demand
and V2G.

The remainder of this paper is organised as follows. In Section 2
we introduce our model. Section 3 presents our control algorithms
and Section 4 the indicators used. Section 5 contains simulation
results. In Section 6 we discuss our method and results and in
Section 7 we draw our final conclusions.

2. Model description

In this section we present the structure and components of our
model. Fig. 1 presents an overview of the microgrid of LomboXnet.
The five main components of the microgrid are the PV installations,
the energy management system, the uncontrollable load, the con-
trollable load, and the connection to the main grid. The uncontrol-
lable load consists of the office building, the internet servers and
three households, each with a distinctive type of load curve. The
demand from the office building peaks during the day, the internet
servers have a constant demand and household demand peaks dur-
ing the morning and evening. The PV power is used to cover both
the uncontrollable and the controllable load. In case of PV power
shortage, electricity is drawn from the main grid. In case of excess
PV power, electricity is fed back into the main grid.

2.1. PV

The PV installations provide electricity to the microgrid. In total,
31 kWp is installed with a solar energy yield of about 25 MW h per
year and a performance ratio (PR) of 74% as measured for the year
2013. The PR is a measure for the overall losses of a PV system and
is defined as the ratio of final energy yield of the PV system in
kW h/kWp to a reference yield, which takes only solar irradiation
into account [2]. In the Netherlands, the average PR is 78% [28].
The below average performance of the LomboXnet PV system is
explained by the partial shading of several solar panels during
the day. The PV power output is directly measured at the solar
inverter and available with a resolution of an hour.

2 Company website available from: <http://www.lombox.nl>. In Dutch.
3 KVPP [Internet]. Snelle opkomst onderling autodelen [update 2013 June 20th;

cited 2014 September 5th] Available from: <http://kpvvdashboard-4.blogspot.nl/
2013/06/snelle-opkomst-onderling-autodelen.html>. In Dutch.

PV
Energy

management
system

Office

Internet servers

Three households

Tesla Model S

Nissan Leaf

Controllable load

Uncontrollable load

Main grid

Fig. 1. Microgrid at LomboXnet, arrows indicate power flows.
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available in the EVs is discharged to cover load demand. Note that
the LP – Uncertainties (Fig. 5e) does not deviate much from LP –
Perfect Information, although the load curve is somewhat less flat
due to deviations from the predictions.

5.2. Simulation results

Fig. 6 presents the load duration curves resulting from the sim-
ulations. The load curves clearly illustrate the reduced energy
demand, energy sent to the grid and peak demand due to the con-
trol algorithms both at the demand and supply side. Peak demand
due to charging of EVs for No Control is easily recognizable and
indicated in the figure. Linear programming is better at reducing
peaks in energy demand than the other charging strategies.
Furthermore, the difference between the curve of LP – Perfect
Information and LP – Uncertainties is small and is be visible only
at the negative side (excess PV) of the graph.

Table 2 presents the indicator scores for each algorithm. Based
on our sensitivity analysis on the effect of using 24-h simulations
instead of month simulations, we lowered all indicator scores of
LP with 7%.

All proposed control systems contribute significantly to increas-
ing self-consumption, reducing the energy sent to the grid and
reducing peaks in electricity demand. The linear programming
algorithms score highest on all indicators, also when uncertainties
are taken into account. The advantage of V2G is also clear from the
results, since scores on all indicators are higher for the algorithms
that include V2G.

Fig. 5. 24-h simulation runs. The top of the coloured area represents the net load, dashed lines indicate when the EV is away on a trip. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Load duration curves resulting from simulations.

Table 2
Simulation results for system performance indicators.

Algorithm SC (%) Energy to grid (MW h/yr) RPR (%)

No Control 49 12.4 –
RT Control 62 9.1 27
RT Control + V2G 79 4.8 43
LP – Perfect Information 91 2.0 75
LP – Uncertainties 87 3.4 67
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2.2. Uncontrollable load

The uncontrollable load is the part of the total load that cannot
be controlled by the energy management system and must be met
at all times. It consists of the electricity demand for the office, the
LomboXnet servers and the three connected households. Electricity
is provided from the PV installations (first priority), the EV batter-
ies (second priority, when V2G is available) and the main grid.

The load demand of the office and internet servers is measured
at LomboXnet with an hourly resolution. The yearly demand in
2012 was 27 MW h. The majority of this demand (19 MW h) is
from the internet servers, which constantly use around 2.2 kW.
Because there are no measurements available for the households,
we use an estimate for the demand. The demand profiles are esti-
mated using a data-set containing 400 unique household profiles
as provided by Claessen [29]. The data-set is based on measure-
ments from Liander, the largest utility company in the
Netherlands. We select households with a yearly average electric-
ity demand within 30% of 3680 kW h, representative for the houses
in the microgrid, resulting in a total of 153 households. This aver-
age is higher than the Dutch yearly average of 3480 kW h [30].
Fig. 2 presents an Example 24-h load profile. In the figure the peaks
at different times caused by the different loads are clearly visible.

2.3. Electric vehicles

Two battery EVs are currently available: a Tesla Model S and a
Nissan Leaf. The technical specifications are presented in Table 1.
Furthermore, a minimum energy level of 20% of the battery capac-
ity is assumed, as well as a power conversion efficiency of 90%.

The EVs are used for car sharing. Experience at LomboXnet has
shown that each car is used for three trips per week on average.
These trips have a duration of 3–6 h, a minimum distance of
20 km, and a maximum distance of the full EV range. These num-
bers are used to simulate driving patterns via a pseudorandom

number generator that decides (a) if a trip is made that day, with
a 3/7 chance of a trip taking place, (b) trip duration, between the
minimum and maximum value, and (c) trip distance, between
the minimum and maximum value. For our purposes, a trip means
that the EVs are not available at the charging stations and that a
certain amount of energy is consumed for driving. The electric
vehicles need around 10 MW h per year in total to make the trips.

2.4. Changes in microgrid composition

LomboXnet considers several extensions of the microgrid,
which we also simulate. Possible extensions in the foreseeable
future include extra solar panels (3 kWp), two extra households,
and three extra EVs. The extra EVs are all Nissan Leafs and include
one EV used similar to the other Nissan Leaf and two private EVs,
used for commuting. The latter EVs make a trip every workday
between 8:00 and 19:00 with a duration of 6–10 h and a distance
of 60–90 km.

Furthermore, we run simulations for certain changes in micro-
grid composition. We vary EV model, average electricity demand
of the households, and the number of trips the EVs make per week.

3. Control algorithms

In this section we present our three simulated control algo-
rithms. Two are based on real-time (RT), with and without the
V2G option, and one is based on linear programming (LP). All algo-
rithms are based on a centralised approach: the energy manage-
ment system decides the EV charging patterns, not the individual
EVs. We use these three charging schemes to evaluate system per-
formance with RT versus planning strategies and to see the effect
of using V2G. The algorithms decide the charging patterns of the
EVs, using them as a flexible demand source and in the case of
V2G as an electricity storage device. The goal of using such a sys-
tem for LomboXnet is to increase the consumption of PV power
within the microgrid. Our algorithms do not incorporate other fac-
tors that might be of interest in addition to PV self-consumption,
such as electricity price and power quality. However, the algo-
rithms are easy to program and suitable for our purpose: demon-
strating the potential role of EVs in this microgrid.

With our first RT algorithm, RT Control, the EVs only use PV
power to charge the batteries, unless there is more demand than
PV power to make a trip. In this algorithm V2G is not available.
There are technological as well as social barriers to V2G technology
[20], so it is interesting to explore strategies without V2G. Our sec-
ond RT algorithm, RT Control + V2G, has the V2G option is avail-
able. The EV charges with PV power as much as possible and
discharges energy when not enough PV power is available for the
uncontrollable load.

While RT Control + V2G is expected to increase the PV
self-consumption it is not necessarily the optimal strategy for EV
charging. The algorithm only uses real-time information and is
therefore not able to optimise the charging pattern for a longer
time period. This is why we also introduce an optimisation algo-
rithm. Constrained optimisation is a technique used often in
research on applications of smart grids, recent examples include
[31–34]. We use linear programming, because increasing PV
self-consumption can be formulated as a linear optimisation prob-
lem. Furthermore, we have previously shown that LP can reduce
peaks significantly more than RT algorithms [35]. For LP, PV power
supply and load demand must be known in advance, so predictions
are necessary. Therefore, we evaluate our algorithm in two ways,
with and without taking uncertainties in predictions into account.

Fig. 2. Load profile example.

Table 1
Technical specifications of EVs. Data source: U.S. Environmental Protection Agency
[update 2014 July 25th, cited 2014 July 28th] available from: http://
www.fueleconomy.gov.

Tesla Model S Nissan Leaf

Battery capacity (kW h) 85 24
Energy consumption (kW h/km) 0.233 0.211
Range (km) 340 150
Charging power (kW) 22 6.6

22 M. van der Kam, W. van Sark / Applied Energy 152 (2015) 20–30
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available in the EVs is discharged to cover load demand. Note that
the LP – Uncertainties (Fig. 5e) does not deviate much from LP –
Perfect Information, although the load curve is somewhat less flat
due to deviations from the predictions.

5.2. Simulation results

Fig. 6 presents the load duration curves resulting from the sim-
ulations. The load curves clearly illustrate the reduced energy
demand, energy sent to the grid and peak demand due to the con-
trol algorithms both at the demand and supply side. Peak demand
due to charging of EVs for No Control is easily recognizable and
indicated in the figure. Linear programming is better at reducing
peaks in energy demand than the other charging strategies.
Furthermore, the difference between the curve of LP – Perfect
Information and LP – Uncertainties is small and is be visible only
at the negative side (excess PV) of the graph.

Table 2 presents the indicator scores for each algorithm. Based
on our sensitivity analysis on the effect of using 24-h simulations
instead of month simulations, we lowered all indicator scores of
LP with 7%.

All proposed control systems contribute significantly to increas-
ing self-consumption, reducing the energy sent to the grid and
reducing peaks in electricity demand. The linear programming
algorithms score highest on all indicators, also when uncertainties
are taken into account. The advantage of V2G is also clear from the
results, since scores on all indicators are higher for the algorithms
that include V2G.

Fig. 5. 24-h simulation runs. The top of the coloured area represents the net load, dashed lines indicate when the EV is away on a trip. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Load duration curves resulting from simulations.

Table 2
Simulation results for system performance indicators.

Algorithm SC (%) Energy to grid (MW h/yr) RPR (%)

No Control 49 12.4 –
RT Control 62 9.1 27
RT Control + V2G 79 4.8 43
LP – Perfect Information 91 2.0 75
LP – Uncertainties 87 3.4 67

26 M. van der Kam, W. van Sark / Applied Energy 152 (2015) 20–30

 
Figure 2: Mean self-consumption and standard deviation of 100 simulations of each control algorithm for each month. 

 
Figure 3: Mean peak reduction and standard deviation of 100 simulations of each control algorithm for each month. 

more than there is PV-power available. Note that the 
latter total load is very small outside the peak. 

For both programs using linear optimization the 
peaks in energy use are much smaller than for the 
other programs, since the EV never charges at full 
power, but at 20-25%. Because the requirements for 
the trip are still exactly planned in the realistic case, 
there are no problems for EV-use. However, it does 
not perform as well as the idealistic case, since 
electricity is fed back to the grid when it could by 
used to cover load demand. 

In figure 2, results from 100 24 hour simulations 
per month for each program evaluated for self-
consumption are shown.  It can be seen that even 
though all systems perform much better than a 
system without a smart grid, it is difficult to tell 

which system performs best for self-consumption. 
The differences between the programs are large 
when compared for peak reduction (figure 3), 
showing that “linear programming” flattens the load 
demand for the main grid significantly better than 
the real-time algorithms. 

4 CONCLUSIONS 

In this paper several control algorithms for 
increasing self-consumption of PV-power in the 
residential sector, using smart grid technology and 
electricity storage in an EV, were proposed. The first 
simulations show that all proposed systems could 
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13Data verkregen uit Lombok, Utrecht, Gerritsma, 2019

de meeste
elektrische auto’s 
blijven veel
langer bij het 
laadstation dan 
nodig is om hun
accu op te laden
à FLEX RUIMTE

Laadgedrag en flexibiliteit (geen sturing)
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Congestie problemen bij groei elektrische auto’s

Gerritsma, 2019
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Simulaties voor combinaties zonPV en EV 
achter trafo

Brinkel, 2020
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Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different grid capacity limits

Figure 3: Pareto frontier for multi-objective optimization of costs and CO2-emissions of EV charging, considering average and

marginal emission profiles and considering unidirectional charging (left) and V2G (right). Pareto frontiers are presented for an EV

adoption rate of 100% and an installed PV capacity of 400 kWp. Battery degradation costs and emissions are considered for all

Pareto frontiers. For V2G, the costs and emissions are presented per net charged kWh (i.e., charging volume minus discharging

volume).

cost-based optimization to emission-based optimization
range from 2.8 to 22.6 �/tCO2eq with increasing levels of
emission abatement when considering marginal emission
profiles with a 400 kVA transformer. The CO2-abatement
costs range from 21.8 to 310.6 �/tCO2eq when considering
average emission profiles.

5.1.2. V2G

V2G functions allow for a larger reduction in charging
costs and emissions, as EVs can inject electricity to the
grid at moments with high costs or emissions. The cost re-
duction potential of V2G compared to uncontrolled charg-
ing equals 32.4% , whereas the emission reduction poten-
tial equals 8.7% when using average emission profiles and
67.3% when using marginal emission profiles. This emis-
sion reduction with V2G is most profound for marginal emis-
sion profiles due to its high volatility in emissions. This
high volatility causes that the emission benefits of discharg-
ing exceed the extra battery degradation emissions, result-
ing in high discharging volumes when minimizing emissions
with marginal emission profiles. This also explains why
the increase in EV charging costs with V2G is higher with

4CO2-abatement costs are calculated by dividing the increase in system
costs when shifting from cost minimization towards a partly emission-based
charging optimization by the decrease in system emissions when making
this shift.

marginal emission profiles when shifting from cost-based
optimization to emission-based optimization. EV discharg-
ing volumes are higher when optimizing emissions using
marginal emission profiles. This causes EVs to inject elec-
tricity to the grid at moments with high emissions and cor-
responding to low electricity prices, thus increasing the net
charging costs of EV charging. The CO2-abatement costs
when shifting from cost-based optimization to emission-
based optimization range from 5.9 to 43.8 �/tCO2eq for
marginal emissions and from 82.7 to 434.8 �/tCO2eq for av-
erage emissions when considering V2G functions with 1 400
kVA transformer.

5.1.3. Impact of transformer reinforcements

Comparing the Pareto frontiers of 400 kVA and 630 kVA
transformers in Figure 3 provides insight on the e�ect of
transformer reinforcements on system costs and emissions.
The results indicate that EV charging costs and emissions
are lower with a 630 kVA transformer from the perspective
of the EV fleet operator (i.e., when neglecting transformer
reinforcement costs and emissions), since this Pareto fron-
tier is located below the 400 kVA Pareto frontier in all sce-
narios. A transformer reinforcement causes that EVs are less
constrained in their charging behavior by the transformer ca-
pacity, providing more freedom to EVs in minimizing their
charging costs or emissions. However, Figure 3 shows that

Brinkel et al.: Preprint submitted to Elsevier Page 8 of 14

Optimalisatie voor laagste kosten én laagste
CO2 emissies

Met V2G 
kosten én 
emissies 
lager
(en trafo 
hoeft niet 
vervangen!)

Brinkel, 2020
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Helpen dynamische net tarieven tegen
net congestie?

Voorbeeld tarieven: 0 – 0.012 – 0.04 € /kWh

Brinkel, 2023



18

Beïnvloeding laadvermogen

Brinkel, 2023



• Share of time with virtual 
grid congestion reduced from 
1.6% to 1.3%

• Share of charging demand 
met at peak hours is reduced 
from 34% to 28% 

27-2-2023 19Brinkel, 2023

Resultaten flexibele nettarieven



Het Utrechtse bidirectionele ecosysteem

• We Drive Solar systeem
• 400 V2G laadpalen
• 100 à 250 deelauto’s
• Stationaire batterijen
• Cartesiusdriehoek
• Merwedekanaalzone
• Qbuzz laadremises
• IRIS Kanaleneiland
• Inside Out
• ASR laadplein (250 

laadpunten)
• USP laadpleinen
• Triodos Bank
• Energiecollectief

Utrechtse Bedrijven
• …



Flexibiliteitssystem

Flexibiliteitsassets:
Bestaande woonwijken

• Smart Solar Charging: V2G deelauto’s en laadpunten
• FLEET / nettarieven: slim laden andere laadpunten / EV
• Stationaire batterijen (Jaarbeurs, IRIS)
• Slim aansturen PV, warmtepompen
• Warmteopslag etc.

Nieuwbouwwijken
• Cartesiusdriehoek
• Merwedekanaalzone
• Slim aansturen PV, warmtepompen, opslag

Werklocaties
• ASR, USP, Lage Weide

Mobiliteit
• Busremises Qbuzz



Sommetjes - Utrecht 

• Utrecht heeft 358000 inwoners en 129000 auto’s (2020): 0.36 auto/inw
• Elektriciteitsverbruik woningen 2021: 

• Per jaar: 366 miljoen kWh 1022 kWh/inw)
• Per dag: 1 miljoen kWh
• Gemiddeld vermogen: 41.7 MW continu

• Aanname: (beschikbare) accu capaciteit 50 kWh
à Voor 1 dag energie nodig: 20000 auto’s (15.5% van totaal)
à Voor 4 uur energie nodig: 3300 auto’s (2.6% van totaal)

• Laadpaal 22 kW 
à 1900 laadpalen nodig voor vermogen

Data van Klimaatmonitor 22



Sommetjes - Houten 

• Houten heeft 50000 inwoners en 63000 auto’s (2020): 1.26 auto/inw
• Elektriciteitsverbruik woningen 2021: 

• Per jaar: 57.5 miljoen kWh (1150 kWh/inw)
• Per dag: 0.16 miljoen kWh
• Gemiddeld vermogen: 6.6 MW continu

• Aanname: (beschikbare) accu capaciteit 50 kWh
à Voor 1 dag energie nodig: 3150 auto’s (5% van totaal)
à Voor 4 uur energie nodig: 525 auto’s (0.8% van totaal)

• Laadpaal 22 kW 
à 300 laadpalen nodig voor vermogen

Data van Klimaatmonitor 23



Verschillen

Utrecht Houten
inwoners 358000 50000
auto’s 129000 63000
E-verbruik woningen (miljoen kWh) 366 57.5
Gemiddeld vermogen (MW) 41.7 6.6
Aantal auto’s voor 4 uur energie 3300 525
Aantal laadpalen voor vermogen 1900 300

24



Utrecht demand peak could be flattened by a few thousand bidirectional e-cars 

There are more than 130.000 cars in the city



Vragen?
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